Compare commits

...

7 commits
0.1 ... main

Author SHA1 Message Date
e4fa911bd6 fix : add a required PackageReference for linux 2025-11-13 10:54:29 +00:00
gelaws-hub
695525d24d chore : remove unused files 2025-08-01 23:08:22 +07:00
gelaws-hub
c390415b6e feat : rework with the logic again, use skiasharp instead 2025-08-01 23:04:42 +07:00
gelaws-hub
dd9f0d9cbe feat : put back the original logic, the streaming mechanism didn't produce a result as expected 2025-08-01 21:11:23 +07:00
gelaws-hub
8b033d0725 Merge branch 'main' of https://null.formulatrix.dev/benscode/benscode-StitcherApi 2025-08-01 20:18:10 +07:00
gelaws-hub
4ed4eea462 feat : algorithm improvements
- use FastStitchProcessor when the canvas is either large, tall or wide (original algorithm)
- introduce StreamingProcessor algorithm for better robust performance
- add logger
2025-08-01 20:18:01 +07:00
gelaws-hub
ff0a302e9f feat : add simple self-benchmark using node js with the help of LLM and upgrade SixLabors version 2025-08-01 20:14:53 +07:00
9 changed files with 569 additions and 140 deletions

1
.gitignore vendored
View file

@ -1,2 +1,3 @@
/bin/
/obj/
/test/benchmark_output/

View file

@ -1,3 +1,4 @@
using SkiaSharp;
using StitcherApi.Models;
using StitcherApi.Services.Utilities;
@ -5,59 +6,247 @@ namespace StitcherApi.Services;
public class ImageService : IImageService
{
private readonly ImageProcessor _processor;
private const int TILE_SIZE = 720;
private const int TileDimension = 720;
private const long HighQualityMemoryThreshold = 512 * 1024 * 1024 * 3;
private readonly string _assetPath;
private readonly ILogger<ImageService> _logger;
public ImageService(IConfiguration configuration)
public ImageService(IConfiguration configuration, ILogger<ImageService> logger)
{
string assetPath =
_assetPath =
configuration["AssetPath"]
?? throw new InvalidOperationException("AssetPath is not configured.");
_processor = new ImageProcessor(assetPath);
_logger = logger;
}
public async Task<byte[]> GenerateImageAsync(GenerateImageRequest request)
public Task<byte[]> GenerateImageAsync(GenerateImageRequest request)
{
// 1. Delegate parsing to the CoordinateParser
(int minRow, int minCol, int maxRow, int maxCol) = CoordinateParser.ParseCanvasRect(
request.CanvasRect
);
// 2. Perform high-level calculations
int stitchedCanvasWidth = (maxCol - minCol + 1) * TILE_SIZE;
int stitchedCanvasHeight = (maxRow - minRow + 1) * TILE_SIZE;
int cropX = (int)(request.CropOffset[0] * stitchedCanvasWidth);
int cropY = (int)(request.CropOffset[1] * stitchedCanvasHeight);
int cropW = (int)(request.CropSize[0] * stitchedCanvasWidth);
int cropH = (int)(request.CropSize[1] * stitchedCanvasHeight);
if (cropW <= 0 || cropH <= 0)
return Task.Run(() =>
{
throw new ArgumentException("Calculated crop dimensions are invalid.");
try
{
_logger.LogInformation(
"Starting image generation for canvas_rect: {CanvasRect}",
request.CanvasRect
);
var (startRow, endRow, startCol, endCol) = CoordinateHelper.ParseCanvasRect(
request.CanvasRect
);
int canvasWidth = (endCol - startCol + 1) * TileDimension;
int canvasHeight = (endRow - startRow + 1) * TileDimension;
int cropX = (int)(request.CropOffset[0] * canvasWidth);
int cropY = (int)(request.CropOffset[1] * canvasHeight);
int cropW = (int)(request.CropSize[0] * canvasWidth);
int cropH = (int)(request.CropSize[1] * canvasHeight);
int outputW = (int)(cropW * request.OutputScale);
int outputH = (int)(cropH * request.OutputScale);
if (outputW <= 0 || outputH <= 0)
{
_logger.LogWarning(
"Output dimensions are zero or negative ({Width}x{Height}). Returning empty byte array.",
outputW,
outputH
);
return Array.Empty<byte>();
}
_logger.LogDebug("Calculated final dimensions: {Width}x{Height}", outputW, outputH);
long requiredMemory = (long)cropW * cropH * 4;
if (requiredMemory <= HighQualityMemoryThreshold)
{
_logger.LogInformation(
"Using high-quality rendering path (required memory: {Memory}MB)",
requiredMemory / (1024 * 1024)
);
return GenerateWithHighQuality(
cropX,
cropY,
cropW,
cropH,
outputW,
outputH,
startRow,
startCol
);
}
else
{
_logger.LogWarning(
"Required memory ({Memory}MB) exceeds threshold. Using low-memory fallback path. Image quality may be reduced.",
requiredMemory / (1024 * 1024)
);
return GenerateWithLowMemory(
cropX,
cropY,
cropW,
cropH,
outputW,
outputH,
startRow,
startCol,
request.OutputScale
);
}
}
catch (Exception ex)
{
_logger.LogError(
ex,
"An unhandled exception occurred during image generation for request: {@Request}",
request
);
throw;
}
});
}
private byte[] GenerateWithHighQuality(
int cropX,
int cropY,
int cropW,
int cropH,
int outputW,
int outputH,
int startRow,
int startCol
)
{
using var cropBufferBitmap = new SKBitmap(cropW, cropH);
using var cropBufferCanvas = new SKCanvas(cropBufferBitmap);
DrawTilesToCanvas(cropBufferCanvas, cropX, cropY, cropW, cropH, startRow, startCol);
using var finalBitmap = new SKBitmap(outputW, outputH);
var sampling = new SKSamplingOptions(SKCubicResampler.Mitchell);
cropBufferBitmap.ScalePixels(finalBitmap, sampling);
return EncodeBitmap(finalBitmap);
}
private byte[] GenerateWithLowMemory(
int cropX,
int cropY,
int cropW,
int cropH,
int outputW,
int outputH,
int startRow,
int startCol,
float scale
)
{
using var finalBitmap = new SKBitmap(outputW, outputH);
using var finalCanvas = new SKCanvas(finalBitmap);
var sampling = new SKSamplingOptions(SKCubicResampler.Mitchell);
int firstTileCol = cropX / TileDimension;
int lastTileCol = (cropX + cropW - 1) / TileDimension;
int firstTileRow = cropY / TileDimension;
int lastTileRow = (cropY + cropH - 1) / TileDimension;
for (int r = firstTileRow; r <= lastTileRow; r++)
{
for (int c = firstTileCol; c <= lastTileCol; c++)
{
var tilePath = Path.Combine(
_assetPath,
$"{CoordinateHelper.IndexToRow(startRow + r)}{startCol + c + 1}.png"
);
using var tileBitmap = SKBitmap.Decode(tilePath);
if (tileBitmap == null)
continue;
using var tileImage = SKImage.FromBitmap(tileBitmap);
int tileCanvasX = c * TileDimension;
int tileCanvasY = r * TileDimension;
int intersectX = Math.Max(cropX, tileCanvasX);
int intersectY = Math.Max(cropY, tileCanvasY);
int intersectEndX = Math.Min(cropX + cropW, tileCanvasX + TileDimension);
int intersectEndY = Math.Min(cropY + cropH, tileCanvasY + TileDimension);
var sourceRect = SKRect.Create(
intersectX - tileCanvasX,
intersectY - tileCanvasY,
intersectEndX - intersectX,
intersectEndY - intersectY
);
var destRect = SKRect.Create(
(intersectX - cropX) * scale,
(intersectY - cropY) * scale,
(intersectEndX - intersectX) * scale,
(intersectEndY - intersectY) * scale
);
finalCanvas.DrawImage(tileImage, sourceRect, destRect, sampling);
}
}
return EncodeBitmap(finalBitmap);
}
int startTileCol = minCol + (cropX / TILE_SIZE);
int endTileCol = minCol + ((cropX + cropW - 1) / TILE_SIZE);
int startTileRow = minRow + (cropY / TILE_SIZE);
int endTileRow = minRow + ((cropY + cropH - 1) / TILE_SIZE);
private void DrawTilesToCanvas(
SKCanvas canvas,
int cropX,
int cropY,
int cropW,
int cropH,
int startRow,
int startCol
)
{
int firstTileCol = cropX / TileDimension;
int lastTileCol = (cropX + cropW - 1) / TileDimension;
int firstTileRow = cropY / TileDimension;
int lastTileRow = (cropY + cropH - 1) / TileDimension;
// 3. Create a parameter object for the processor
StitchRequest stitchRequest = new StitchRequest(
minRow,
minCol,
startTileRow,
startTileCol,
endTileRow,
endTileCol,
cropX,
cropY,
cropW,
cropH,
request.OutputScale
for (int r = firstTileRow; r <= lastTileRow; r++)
{
for (int c = firstTileCol; c <= lastTileCol; c++)
{
var tilePath = Path.Combine(
_assetPath,
$"{CoordinateHelper.IndexToRow(startRow + r)}{startCol + c + 1}.png"
);
using var tileBitmap = SKBitmap.Decode(tilePath);
if (tileBitmap == null)
continue;
int tileCanvasX = c * TileDimension;
int tileCanvasY = r * TileDimension;
int intersectX = Math.Max(cropX, tileCanvasX);
int intersectY = Math.Max(cropY, tileCanvasY);
int intersectEndX = Math.Min(cropX + cropW, tileCanvasX + TileDimension);
int intersectEndY = Math.Min(cropY + cropH, tileCanvasY + TileDimension);
var sourceRect = SKRect.Create(
intersectX - tileCanvasX,
intersectY - tileCanvasY,
intersectEndX - intersectX,
intersectEndY - intersectY
);
var destRect = SKRect.Create(
intersectX - cropX,
intersectY - cropY,
intersectEndX - intersectX,
intersectEndY - intersectY
);
canvas.DrawBitmap(tileBitmap, sourceRect, destRect);
}
}
}
private byte[] EncodeBitmap(SKBitmap bitmap)
{
using var image = SKImage.FromBitmap(bitmap);
using var data = image.Encode(SKEncodedImageFormat.Png, 100);
_logger.LogInformation(
"Image generation successful. Returning {ByteCount} bytes.",
data.Size
);
// 4. Delegate image processing work
return await _processor.StitchAndCropAsync(stitchRequest);
return data.ToArray();
}
}

View file

@ -0,0 +1,60 @@
using System.Text.RegularExpressions;
namespace StitcherApi.Services.Utilities;
public static class CoordinateHelper
{
private static readonly Regex CoordRegex = new(@"([A-Z]+)(\d+)", RegexOptions.Compiled);
public static (int startRow, int endRow, int startCol, int endCol) ParseCanvasRect(
string rectStr
)
{
var parts = rectStr.Split(':');
if (parts.Length != 2)
{
throw new ArgumentException("Invalid canvas_rect format. Expected format 'A1:H12'.");
}
var (r1, c1) = ParseSingleCoordinate(parts[0]);
var (r2, c2) = ParseSingleCoordinate(parts[1]);
return (Math.Min(r1, r2), Math.Max(r1, r2), Math.Min(c1, c2), Math.Max(c1, c2));
}
public static string IndexToRow(int index)
{
index++;
var result = "";
while (index > 0)
{
int remainder = (index - 1) % 26;
result = (char)('A' + remainder) + result;
index = (index - 1) / 26;
}
return result;
}
private static (int row, int col) ParseSingleCoordinate(string coord)
{
var match = CoordRegex.Match(coord);
if (!match.Success)
{
throw new ArgumentException($"Invalid coordinate format: '{coord}'.");
}
string rowStr = match.Groups[1].Value;
int col = int.Parse(match.Groups[2].Value) - 1;
return (RowToIndex(rowStr), col);
}
private static int RowToIndex(string rowStr)
{
int index = 0;
foreach (char c in rowStr)
{
index = index * 26 + (c - 'A' + 1);
}
return index - 1;
}
}

View file

@ -1,94 +0,0 @@
using SixLabors.ImageSharp;
using SixLabors.ImageSharp.PixelFormats;
using SixLabors.ImageSharp.Processing;
namespace StitcherApi.Services.Utilities;
internal class ImageProcessor
{
private readonly string _assetPath;
private const int TILE_SIZE = 720;
public ImageProcessor(string assetPath)
{
_assetPath = assetPath;
}
public async Task<byte[]> StitchAndCropAsync(StitchRequest stitchRequest)
{
using Image<Rgba32> finalImage = new(stitchRequest.CropW, stitchRequest.CropH);
for (int r = stitchRequest.StartTileRow; r <= stitchRequest.EndTileRow; r++)
{
for (int c = stitchRequest.StartTileCol; c <= stitchRequest.EndTileCol; c++)
{
string tileFileName = TileHelper.GetTileFileName(r, c);
string tileFilePath = Path.Combine(_assetPath, tileFileName);
if (!File.Exists(tileFilePath))
{
throw new FileNotFoundException($"Asset not found: {tileFileName}");
}
using Image tileImage = await Image.LoadAsync(tileFilePath);
int tileOriginX = (c - stitchRequest.MinCol) * TILE_SIZE;
int tileOriginY = (r - stitchRequest.MinRow) * TILE_SIZE;
int srcX = Math.Max(0, stitchRequest.CropX - tileOriginX);
int srcY = Math.Max(0, stitchRequest.CropY - tileOriginY);
int destX = Math.Max(0, tileOriginX - stitchRequest.CropX);
int destY = Math.Max(0, tileOriginY - stitchRequest.CropY);
int overlapW = Math.Max(
0,
Math.Min(stitchRequest.CropX + stitchRequest.CropW, tileOriginX + TILE_SIZE)
- Math.Max(stitchRequest.CropX, tileOriginX)
);
int overlapH = Math.Max(
0,
Math.Min(stitchRequest.CropY + stitchRequest.CropH, tileOriginY + TILE_SIZE)
- Math.Max(stitchRequest.CropY, tileOriginY)
);
if (overlapW > 0 && overlapH > 0)
{
Rectangle sourceRect = new Rectangle(srcX, srcY, overlapW, overlapH);
finalImage.Mutate(ctx =>
ctx.DrawImage(
tileImage,
new Point(destX, destY),
sourceRect,
new GraphicsOptions()
)
);
}
}
}
if (stitchRequest.OutputScale > 0 && stitchRequest.OutputScale < 1.0)
{
int newWidth = (int)(stitchRequest.CropW * stitchRequest.OutputScale);
int newHeight = (int)(stitchRequest.CropH * stitchRequest.OutputScale);
finalImage.Mutate(x => x.Resize(newWidth, newHeight, KnownResamplers.Bicubic));
}
using MemoryStream memoryStream = new MemoryStream();
await finalImage.SaveAsPngAsync(memoryStream);
return memoryStream.ToArray();
}
}
internal record StitchRequest(
int MinRow,
int MinCol,
int StartTileRow,
int StartTileCol,
int EndTileRow,
int EndTileCol,
int CropX,
int CropY,
int CropW,
int CropH,
float OutputScale
);

View file

@ -6,6 +6,7 @@
</PropertyGroup>
<ItemGroup>
<PackageReference Include="Microsoft.AspNetCore.OpenApi" Version="8.0.5" />
<PackageReference Include="SixLabors.ImageSharp" Version="3.1.10" />
<PackageReference Include="SkiaSharp" Version="3.119.0" />
<PackageReference Include="SkiaSharp.NativeAssets.Linux.NoDependencies" Version="3.119.0" />
</ItemGroup>
</Project>

View file

@ -2,7 +2,8 @@
"Logging": {
"LogLevel": {
"Default": "Information",
"Microsoft.AspNetCore": "Warning"
"Microsoft.AspNetCore": "Warning",
"StitcherApi": "Debug"
}
}
}

259
test/benchmark.js Normal file
View file

@ -0,0 +1,259 @@
import fs from "fs/promises";
import path from "path";
const API_ENDPOINT = "http://localhost:5229/api/image/generate";
const NUM_REQUESTS_PER_SCENARIO = 10;
const OUTPUT_DIR = "benchmark_output";
const colors = {
reset: "\x1b[0m",
bright: "\x1b[1m",
dim: "\x1b[2m",
fg: {
cyan: "\x1b[36m",
green: "\x1b[32m",
yellow: "\x1b[33m",
red: "\x1b[31m",
},
};
const scenarios = [
{
name: "Small Canvas, Small Crop",
payload: {
canvas_rect: "A1:B2",
crop_offset: [0.25, 0.25],
crop_size: [0.5, 0.5],
output_scale: 1.0,
},
},
{
name: "Medium Canvas, Full Crop (Stitching)",
payload: {
canvas_rect: "C3:F6",
crop_offset: [0.0, 0.0],
crop_size: [1.0, 1.0],
output_scale: 0.5,
},
},
{
name: "Large Canvas, Small Corner Crop",
payload: {
canvas_rect: "A1:H12",
crop_offset: [0.0, 0.0],
crop_size: [0.1, 0.1],
output_scale: 1.0,
},
},
{
name: "Large Canvas, Center Crop",
payload: {
canvas_rect: "A1:AE55",
crop_offset: [0.45, 0.45],
crop_size: [0.1, 0.1],
output_scale: 1.0,
},
},
{
name: "Tall Canvas, Full Crop & Scale",
payload: {
canvas_rect: "A1:A20",
crop_offset: [0.0, 0.0],
crop_size: [1.0, 1.0],
output_scale: 0.1,
},
},
{
name: "Wide Canvas, Full Crop & Scale",
payload: {
canvas_rect: "A1:T1",
crop_offset: [0.0, 0.0],
crop_size: [1.0, 1.0],
output_scale: 0.1,
},
},
{
name: "Single Tile, Full Crop",
payload: {
canvas_rect: "K16:K16",
crop_offset: [0.0, 0.0],
crop_size: [1.0, 1.0],
output_scale: 1.0,
},
},
{
name: "Single Tile, Partial Crop",
payload: {
canvas_rect: "K16:K16",
crop_offset: [0.1, 0.1],
crop_size: [0.25, 0.25],
output_scale: 1.0,
},
},
{
name: "Large Canvas, Bottom-Right Crop",
payload: {
canvas_rect: "A1:AE55",
crop_offset: [0.95, 0.95],
crop_size: [0.05, 0.05],
output_scale: 1.0,
},
},
{
name: "Wide Canvas, Thin Horizontal Crop",
payload: {
canvas_rect: "A1:AE10",
crop_offset: [0.0, 0.5],
crop_size: [1.0, 0.01],
output_scale: 1.0,
},
},
{
name: "Tall Canvas, Thin Vertical Crop",
payload: {
canvas_rect: "A1:J55",
crop_offset: [0.5, 0.0],
crop_size: [0.01, 1.0],
output_scale: 1.0,
},
},
{
name: "Medium Canvas, Heavy Scaling",
payload: {
canvas_rect: "D4:G8",
crop_offset: [0.0, 0.0],
crop_size: [1.0, 1.0],
output_scale: 0.05,
},
},
{
name: "MAXIMUM CANVAS (Streaming Test)",
payload: {
canvas_rect: "A1:AE55",
crop_offset: [0.0, 0.0],
crop_size: [1.0, 1.0],
output_scale: 0.01,
},
},
];
const calculateStats = (times) => {
if (times.length === 0) return null;
const sum = times.reduce((a, b) => a + b, 0);
const avg = sum / times.length;
const stdDev = Math.sqrt(
times.map((x) => Math.pow(x - avg, 2)).reduce((a, b) => a + b, 0) /
times.length
);
const sorted = [...times].sort((a, b) => a - b);
return {
avg: avg,
stdDev: stdDev,
median: sorted[Math.floor(sorted.length / 2)],
min: sorted[0],
max: sorted[sorted.length - 1],
throughput: 1000 / avg,
};
};
async function runBenchmark() {
console.log(
`${colors.bright}${colors.fg.cyan}--- Starting Image Stitcher API Benchmark ---${colors.reset}`
);
try {
await fs.mkdir(OUTPUT_DIR, { recursive: true });
} catch (e) {
console.error(
`${colors.fg.red}Error creating output directory: ${e.message}${colors.reset}`
);
return;
}
const allResults = [];
for (const scenario of scenarios) {
console.log(
`\n${colors.fg.yellow}Running Scenario: '${scenario.name}' (${NUM_REQUESTS_PER_SCENARIO} requests)...${colors.reset}`
);
const responseTimes = [];
for (let i = 0; i < NUM_REQUESTS_PER_SCENARIO; i++) {
try {
const startTime = performance.now();
const response = await fetch(API_ENDPOINT, {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify(scenario.payload),
});
const endTime = performance.now();
if (response.ok) {
responseTimes.push(endTime - startTime);
if (i === 0) {
const arrayBuffer = await response.arrayBuffer();
const buffer = Buffer.from(arrayBuffer);
const fileName = `${scenario.name
.replace(/[\s(),]/g, "_")
.toLowerCase()}.png`;
const filePath = path.join(OUTPUT_DIR, fileName);
await fs.writeFile(filePath, buffer);
console.log(
` ${colors.dim}Saved output image to '${filePath}'${colors.reset}`
);
} else {
await response.arrayBuffer();
}
} else {
console.log(
` ${colors.fg.red}Request ${i + 1} failed with status ${
response.status
}${colors.reset}`
);
}
} catch (e) {
console.error(
` ${colors.fg.red}Request ${i + 1} failed with an exception: ${
e.message
}${colors.reset}`
);
break;
}
}
const stats = calculateStats(responseTimes);
if (stats) {
allResults.push({ name: scenario.name, stats });
console.log(
` ${colors.fg.green}Average Latency: ${stats.avg.toFixed(2)} ms${
colors.reset
}`
);
}
}
console.log(
`\n${colors.bright}${colors.fg.cyan}--- Benchmark Summary ---${colors.reset}`
);
for (const result of allResults) {
console.log(`\n${colors.bright}Scenario: ${result.name}${colors.reset}`);
const { stats } = result;
console.log(
` Avg Latency: ${stats.avg.toFixed(2)} ms (+/- ${stats.stdDev.toFixed(
2
)} ms)`
);
console.log(
` Details (ms): Median: ${stats.median.toFixed(
2
)} | Min: ${stats.min.toFixed(2)} | Max: ${stats.max.toFixed(2)}`
);
console.log(` Avg Throughput: ${stats.throughput.toFixed(2)} req/s`);
}
console.log(
`\n${colors.bright}${colors.fg.cyan}--- Benchmark Complete ---${colors.reset}`
);
}
runBenchmark();

12
test/package.json Normal file
View file

@ -0,0 +1,12 @@
{
"name": "api-benchmark",
"version": "1.0.0",
"description": "A benchmark script for the Image Stitcher API.",
"main": "benchmark.js",
"type": "module",
"scripts": {
"start": "node benchmark.js"
},
"author": "",
"license": "ISC"
}